Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Res Sq ; 2020 May 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1431216

RESUMEN

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.

2.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1149231

RESUMEN

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Asunto(s)
COVID-19/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/mortalidad , COVID-19/patología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inflamación , Estudios Longitudinales , Pulmón/patología , Macrófagos/inmunología , Macrófagos/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Células Mieloides/patología , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Transcriptoma , Adulto Joven
3.
medRxiv ; 2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: covidwho-900760

RESUMEN

Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, high-dimensional profiling of paired airway and blood samples from patients with severe COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. Survival from severe disease was associated with increased CD4 + T cells and decreased monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and macrophages exhibited tissue-resident phenotypes and activation signatures, including high level expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant CD163 + and immature phenotypes. Extensive accumulation of CD163 + monocyte/macrophages within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and rationale for site-specific treatment and prevention strategies.

4.
BMC Neurol ; 20(1): 248, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: covidwho-603847

RESUMEN

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Citocinas/líquido cefalorraquídeo , Encefalitis Viral , Pandemias , Neumonía Viral , Enfermedad Aguda , Anciano , Biomarcadores/líquido cefalorraquídeo , COVID-19 , Femenino , Humanos , SARS-CoV-2 , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA